Ignacio Darnaude Rojas�Marcos

Cabeza del Rey Don Pedro , 9  ( 2º B )

41004 � Sevilla  ( Spain )









                Dear Sirs ,









                Please first realize this unexpectod request is not a routine petition at all , but an old unresolved soul�problem to the writer , a graduated in Economics and by the way enamoured of Mathematics , his second lifelong love affair.    ( He is , too , fallen in love with some imaginable  sort of solution to the handsome exponential equation             “A   elevated to   x   plus    B   elevated to    x      =      C    elevated to   x” ).   









                I am	extremely interested 	in finding finally, after many years of fruitless search , the rather arcane answer to my personal   “Fermat  Last  Theorem”  ,  I 	think an easy task for  Euler   or   Galois    :     the mysterious integral 

which reads as follows    :                                  



                                                     

"Indefinite  integral  of      X     elevated  to    x     by  differential     x"  :                     





x

S  X   dx









               In other words I am looking for some elusive primitive algebraical function that , derived , result into a beautifully complex and elegant  potential�exponential  expression   :    X   elevated to   x.









              









               Be sure this remote friend Ignacio would be delighted if you wisely make the  Sevillian  happy by means of forwarding him his keenly wanted explanation of this	damned integral , send him the address of possible academic sources of information  ( the most prestigious worldwide university departments especialized in  Math )	, or specific bibliography dealing with the above mentioned                   “Integral of    X    elevetad to    x     differential    x”.









               I remain mathematically and of course humanly grateful to you for such an integral informative favour.









                With my warmest regards



















INTEGRAL  S X^x dx , TEOREMAS DE       EDGAR       Y            WIENER
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What's the antiderivative of exp(-x^2)? , of sin(x)/x?,     of x^x?



------------------------------------------------------------------------



These, and some similar problems, can't be done.



 



More precisely, consider the notion of "elementary function".  These are



the functions that can be expressed in terms of exponentals and



logarithms,



via the usual algebraic processes, including the solving (with or



without



radicals) of polynomials.  Since the trigonometric functions and their



inverses can be expressed in terms of exponentials and logarithms using



the complex numbers C, these too are elementary.



 



The elementary functions are, so to speak, the "precalculus functions".



 



Then there is a theorem that says certain elementary functions do not



have an elementary antiderivative.  They still have antiderivatives,



but "they can't be done".  The more common ones get their own names.



Up to some scaling factors, "erf" is the antiderivative of exp(-x^2)



and "Si" is the antiderivative of sin(x)/x, and so on.



------------------------------------------------------------------------



For those with a little bit of undergraduate algebra, we sketch a proof



of these, and a few others, using the notion of a differential field.



These are fields (F,+,.,1,0) equipped with a derivation, that is, a



unary operator ' satisifying (a+b)'=a'+b' and (a.b)'=a.b'+a'.b.  Given



a differential field F, there is a subfield Con(F)={a:a'=0}, called the



_constants_ of F.  We let I(f) denote an antiderivative.  We ignore +cs.



 



Most examples in practice are subfields of M, the meromorphic functions



on C (or some domain).  Because of uniqueness of analytic extensions,



one



rarely has to specify the precise domain.



 



Given differential fields F and G, with F a subfield of G, one calls G



an algebraic extension of F if G is a finite field extension of F.



 



One calls G a logarithmic extension of F if G=F(t) for some



transcendental



t that satisfies t'=s'/s, some s in F.  We may think of t as log s, but



note that we are not actually talking about a logarithm function on F. 



We



simply have a new element with the right derivative.  Other "logarithms"



would have to be adjoined as needed.



 



Similarly, one calls G an exponential extension of F if G=F(t) for some



transcendental t that satisfies t'=t.s', some s in F.  Again, we may



think of t as exp s, but there is no actual exponential function on F.



 



Finally, we call G an elementary differential extension of F if there is



a finite chain of subfields from F to G, each an algebraic, logarithmic,



or exponential extension of the next smaller field.



 



The following theorem, in the special case of M, is due to Liouville. 



The



algebraic generality is due to Rosenlicht.  More powerful theorems have



been proven by Risch, Davenport, and others, and are at the heart of



symbolic integration packages.



 



A short proof, accessible to those with a solid background in



undergraduate



algebra, can be found in Rosenlicht's AMM paper (see references).  It is



probably easier to master its applications first, which often use



similar



techniques, and then learn the proof.



------------------------------------------------------------------------



MAIN THEOREM.  Let F,G be differential fields, let a be in F, let y be



in G,



and suppose y'=a and G is an elementary differential extension field of



F,



and Con(F)=Con(G).  Then there exist c_1,...,c_n in Con(F),



u_1,...,u_n, v



in F such that



                           u_1'            u_n'



                 a  =  c_1 --- + ... + c_n --- + v'.



                           u_1             u_n



 



That is, the only functions that have elementary antiderivatives are the



ones that have this very specific form.  In words, elementary integrals



always consist of a function at the same algebraic "complexity" level as



the starting function (the v), along with the logarithms of functions at



the same algebraic "complexity" level (the u_i 's).



------------------------------------------------------------------------



This is a very useful theorem for proving non-integrability.  Because



this topic is of interest, but it is only written up in bits and pieces,



I give numerous examples.  (Since the original version of this FAQ from



way back when, two how-to-work-it write-ups have appeared.  See Fitt &



Hoare and Marchisotto & Zakeri in the references.)



 



In the usual case, F,G are subfields of M, so Con(F)=Con(G) always



holds,



both being C.  As a side comment, we remark that this equality is



necessary.



Over R(x), 1/(1+x^2) has an elementary antiderivative, but none of the



above



form.



 



We first apply this theorem to the case of integrating f.exp(g), with f



and g rational functions.  If g=0, this is just f, which can be



integrated



via partial fractions.  So assume g is nonzero.  Let t=exp(g), so



t'=g't.



Since g is not zero, it has a pole somewhere (perhaps out at infinity),



so exp(g) has an essential singularity, and thus t is transcendental



over



C(z).  Let F=C(z)(t), and let G be an elementary differential extension



containing an antiderivative for f.t.



 



Then Liouville's theorem applies, so we can write



 



                        u_1'            u_n'



             f.t =  c_1 --- + ... + c_n --- + v'



                        u_1             u_n



 



with the c_i constants and the u_i and v in F.  Each u_i is a ratio of



two C(z)[t] polynomials, U/V say.  But (U/V)'/(U/V)=U'/U-V'/V (quotient



rule), so we may rewrite the above and assume each u_i is in C(z)[t].



And if any u_i=U.V factors, then (U.V)'/(U.V)=U'/U+V'/V and so we can



further assume each u_i is irreducible over C(z).



 



What does a typical u'/u look like?  For example, consider the case of u



quadratic in t.  If A,B,C are rational functions in C(z), then A',B',C'



are also rational functions in C(z) and



 



        (A.t^2+B.t+C)'    A'.t^2 + 2At(gt) + B'.t + B.(gt) + C'



        -------------  =  -------------------------------------



         A.t^2+B.t+C               A.t^2 + B.t + C



 



                          (A'+2Ag).t^2 + (B'+Bg).t + C'



                       =  -----------------------------   .



                                 A.t^2 + B.t + C



 



(Note that contrary to the usual situation, the degree of a polynomial



in t stays the same after differentiation.  That is because we are



taking derivatives with respect to z, not t.  If we write this out



explicitly, we get (t^n)' = exp(ng)' = ng'.exp(ng) = ng'.t^n.)



 



In general, each u'/u is a ratio of polynomials of the same degree.  We



can, by doing one step of a long division, also write it as D+R/u, for



some D in C(z) and R in C(z)[t], with deg(R)<deg(u).



 



By taking partial fractions, we can write v as a sum of a C(z)[t]



polynomial



and some fractions P/Q^n with deg(P)<deg(Q), Q irreducible, with each



P,Q



in C(z)[t].  v' will thus be a polynomial plus partial fraction like



terms.



 



Somehow, this is supposed to come out to just f.t.  By the uniqueness of



partial fraction decompositions, all terms other than multiples of t add



up to 0.  Only the polynomial part of v can contribute to f.t, and this



must be a monomial over C(z).  So f.t=(h.t)', for some rational h.  (The



temptation to assert v=h.t here is incorrect, as there could be some



C(z)



term, cancelled by u'/u terms.  We only need to identify the terms in v



that contribute to f.t, so this does not matter.)



 



Summarizing, if f.exp(g) has an elementary antiderivative, with f and g



rational functions, g nonzero, then it is of the form h.exp(g), with h



rational.



 



We work out particular examples, of this and related applications.  A



bracketed function can be reduced to the specified example by a change



of variables.



 



**      exp(z^2)        [sqrt(z).exp(z),exp(z)/sqrt(z)]



 



Let h.exp(z^2) be its antiderivative.  Then h'+2zh=1.  Solving this ODE



gives h=exp(-z^2)*I(exp(z^2)), which has no pole (except perhaps at



infinity), so h, if rational, must be a polynomial.  But the derivative



of h cannot cancel the leading power of 2zh, contradiction.



 



**      exp(z)/z        [exp(exp(z)),1/log(z)]



 



Let h.exp(z) be an antiderivative.  Then h'+h=1/z.  I know of two quick



ways to prove that h is not rational.



 



One can explicitly solve the first order ODE (getting



exp(-z)*I(exp(z)/z)),



and then notice that the solution has a logarithmic singularity at zero.



For example, h(z)->oo but sqrt(z)*h(z)->0 as z->0.  No rational function



does this.



 



Or one can assume h has a partial fraction decomposition.  Obviously no



h'



term will give 1/z, so 1/z must be present in h already. But



(1/z)'=-1/z^2,



and this is part of h'.  So there is a 1/z^2 in h to cancel this.  But



(1/z^2) is -2/z^3, and this is again part of h'.  And again, something



in h cancels this, etc etc etc.  This infinite regression is impossible.



 



**      sin(z)/z        [sin(exp(z))]



**      sin(z^2)        [sqrt(z).sin(z),sin(z)/sqrt(z)]



 



Since sin(z)=%[exp(iz)-exp(-iz)] (where %=1/2i), we merely rework the



above f.exp(g) result.  Let f be rational, let t=exp(iz) (so t'/t=i) and



let T=exp(iz^2) (so T'/T=2iz) and we want an antiderivative of either



%f.(t-1/t) or T-1/T.  For the former, the same partial fraction results



still apply in identifying %f.t=(h.t)'=(h'+ih).t, which can't happen, as



above.  In the case of sin(z^2), we want %T=(h.T)'=(h'+2izh).T, and



again,



this can't happen, as above.



 



Although done, we push this analysis further in the f.sin(z)/z case, as



there are extra terms hanging around.  This time around, the conclusion



gives an additional k/t term inside v, so we have



-%f/t=(k/t)'=(k'-ik)/t.



So the antiderivative of %f*(t-1/t) is h.t+k/t.



 



If f is even and real, then h and k (like t=exp(iz) and 1/t=exp(-iz))



are



parity flips of each other, so (as expected) the antiderivative is even.



Letting C=cos(z), S=sin(z), h=H+iF and k=K+iG, the real (and only) part



of the antiderivative of f is (HC-FS)+(KC+GS)=(H+K)C+(G-F)S.  So over



the reals, we find that the antiderivative of (rational even).sin(x) is



of the form (rational even).cos(x)+ (rational odd).sin(x).



 



A similar result holds for (odd).sin(x), (even).cos(x), (odd).cos(x). 



And



since a rational function is the sum of its (rational) even and odd



parts,



(rational).sin integrates to (rational).sin + (rational).cos, or not at



all.



 



Let's backtrack, and apply this to sin(x)/x directly, using reals only.



If it has an elementary antiderivative, it must be of the form E.S+O.C.



Taking derivatives gives (E'-O).S+(E+O').C.  As with partial fractions,



we have a unique R(x)[S,C] representation here (this is a bit tricky,



as S^2=1-C^2: this step can be proven directly or via solving for t,1/t



coefficients over C).  So E'-O=1/x and E+O'=0, or O''+O=-1/x. 



Expressing



O in partial fraction form, it is clear only (-1/x) in O can contribute



a -1/x.  So there is a -2/x^3 term in O'', so there is a 2/x^3 term in



O to cancel it, and so on, an infinite regress.  Hence, there is no such



rational O.



 



**      arcsin(z)/z     [z.tan(z)]



 



We consider the case where F=C(z,Z)(t) as a subfield of the meromorphic



functions on some domain, where z is the identify function,



Z=sqrt(1-z^2),



and t=arcsin z.  Then Z'=-z/Z, and t'=1/Z.  We ask in the main theorem



result if this can happen with a=t/z and some field G.  t is



transcendental



over C(z,Z), since it has infinite branch points.



 



So we consider the more general situation of f(z).arcsin(z) where f(z)



is rational in z and sqrt(1-z^2).  By letting z=2w/(1+w^2), note that



members of C(z,Z) are always elementarily integrable.



 



Because x^2+y^2-1 is irreducible, C[x,y]/(x^2+y^2-1) is an integral



domain,



C(z,Z) is isomorphic to its field of quotients in the obvious manner,



and



C(z,Z)[t] is a UFD whose field of quotients is amenable to partial



fraction



analysis in the variable t.  What follows takes place at times in



various



z-algebraic extensions of C(z,Z) (which may not have unique



factorization),



but the terms must combine to give something in C(z,Z)(t), where partial



fraction decompositions are unique, and hence the t term will be as



claimed.



 



Thus, if we can integrate f(z).arcsin(z), we have f.t = sum of (u'/u)s



and v', by the main theorem.



 



The u terms can, by logarithmic differentiation in the appropriate



algebraic extension field (recall that roots are analytic functions of



the coefficients, and t is transcendental over C(z,Z)), be assumed to



all be linear t+r, with r algebraic over z.  Then u'/u=(1/Z+r')/(t+r).



When we combine such terms back in C(z,Z), they don't form a t term



(nor any higher power of t, nor a constant).



 



Partial fraction decomposition of v gives us a polynomial in t, with



coefficients in C(z,Z), plus multiples of powers of linear t terms.



The latter don't contribute to a t term, as above.



 



If the polynomial is linear or quadratic, say v=g.t^2 + h.t + k, then



v'=g'.t^2 + (2g/Z+h').t + (h/Z+k').  Nothing can cancel the g', so g



is just a constant c.  Then 2c/Z+h'=f or I(f.t)=2c.t+I(h'.t).  The



I(h'.t) can be integrated by parts.  So the antiderivative works out



to c.(arcsin(z))^2 + h(z).arcsin(z) - I(h(z)/sqrt(1-z^2)), and as



observed above, the latter is elementary.



 



If the polynomial is cubic or higher, let v=A.t^n+B.t^(n-1)+...., then



v'=A'.t^n + (n.A/Z+B').t^(n-1) +....  A must be a constant c.  But then



nc/Z+B'=0, so B=-nct, contradicting B being in C(z,Z).



 



In particular, since 1/z + c/sqrt(1-z^2) does not have a rational in



"z and/or sqrt(1-z^2)" antiderivative, arcsin(z)/z does not have an



elementary integral.



 



**      z^z



 



In this case, let F=C(z,l)(t), the field of rational functions in z,l,t,



where l=log z and t=exp(z.l)=z^z.  Note that z,l,t are algebraically



independent.  Then t'=(l+1).t, so for a=t in the main theorem, the



partial fraction analysis shows that the only possibility is for



v=w.t+... to be the source of the t term on the left, with w in C(z,l).



 



So this means, equating t coefficients, 1=w'+(l+1)w.  This is a first



order ODE, whose solution is w=I(z^z)/z^z.  So we must prove that no



such w exists in C(z,l).  So suppose w=P/Q, with P,Q in C[z,l] and no



common factors.  Then z^z=(z^z*P/Q)'=z^z*[(1+l)PQ+P'Q-PQ']/Q^2, or



Q^2=(1+l)PQ+P'Q-PQ'.  So Q|Q', meaning Q is a constant, which we may



assume to be one.  So we have it down to P'+P+lP=1.



 



Let P=Sum[P_i l^i], with P_i, i=0...n in C[z].  But then in our



equation,



there's a dangling P_n l^(n+1) term, a contradiction.



------------------------------------------------------------------------



On a slight tangent, this theorem of Liouville will not tell you that



Bessel functions are not elementary, since they are defined by second



order ODEs.  This can be proven using differential Galois theory.  A



variant of the above theorem of Liouville, with a different normal form,



does show however that J_0 cannot be integrated in terms of elementary



methods augmented with Bessel functions.



===================================================================================================



What follows is a fairly complete sketch of the proof of the Main



Theorem.



First, I just state some easy (if you've had Galois Theory 101) lemmas.



Throughout the lemmas F is a differential field, and t is transcendental



over F.



 



Lemma 1: If K is an algebraic extension field of F, then there exists a



unique way to extend the derivation map from F to K so as to make K into



a differential field.



 



Lemma 2: If K=F(t) is a differential field with derivation extending



F's,



and t' is in F, then for any polynomial f(t) in F[t], f(t)' is a



polynomial



in F[t] of the same degree (if the leading coefficient is not in Con(F))



or of degree one less (if the leading coefficient is in Con(F)).



 



Lemma 3: If K=F(t) is a differential field with derivation extending



F's,



and t'/t is in F, then for any a in F, n a positive integer, there



exists



h in F such that (a*t^n)'=h*t^n.  More generally, if f(t) is any



polynomial



in F[t], then f(t)' is of the same degree as f(t), and is a multiple of



f(t) iff f(t) is a monomial.



 



These are all fairly elementary.  For example, (a*t^n)'=(a'+at'/t)*t^n



in lemma 3.  The final 'iff' in lemma 3 is where transcendence of t



comes



in.  Lemma 1 in the usual case of subfields of M is an easy consequence



of the implicit function theorem.



-------------------------------------------------------------------------



-



MAIN THEOREM.  Let F,G be differential fields, let a be in F, let y be



in G,



and suppose y'=a and G is an elementary differential extension field of



F,



and Con(F)=Con(G).  Then there exist c_1,...,c_n in Con(F),



u_1,...,u_n, v



in F such that



                        u_1'            u_n'



               a =  c_1 --- + ... + c_n --- + v'.



                        u_1             u_n



 



In other words, the only functions that have elementary antiderivatives



are the ones that have this very specific form.



------------------------------------------------------------------------



Proof:



 



By assumption there exists a finite chain of fields connecting F to G



such that the extension from one field to the next is given by



performing



an algebraic, logarithmic, or exponential extension.  We show that if



the



form (*) can be satisfied with values in F2, and F2 is one of the three



kinds of allowable extensions of F1, then the form (*) can be satisfied



in F1.  The form (*) is obviously satisfied in G: let all the c's be 0,



the



u's be 1, and let v be the original y for which y'=a.  Thus, if the form



(*) can be pulled down one field, we will be able to pull it down to F,



and the theorem holds.



 



So we may assume without loss of generality that G=F(t).



 



Case 1: t is algebraic over F.  Say t is of degree k.  Then there are



polynomials U_i and V such that U_i(t)=u_i and V(t)=v.  So we have



 



                        U_1(t)'            U_n(t)'



               a =  c_1 ------ + ... + c_n ------ + V(t)'.



                        U_1(t)             U_n(t)



 



Now, by the uniqueness of extensions of derivatives in the algebraic



case,



we may replace t by any of its conjugates t_1,..., t_k, and the same



equation



holds.  In other words, because a is in F, it is fixed under the Galois



automorphisms.  Summing up over the conjugates, and converting the U'/U



terms into products using logarithmic differentiation, we have



 



            [U_1(t_1)*...*U_1(t_k)]'



 k a =  c_1 ----------------------- + ...  + [V(t_1)+...+V(t_k)]'.



             U_1(t_1)*...*U_n(t_k)



 



But the expressions in [...] are symmetric polynomials in t_i, and as



they are polynomials with coefficients in F, the resulting expressions



are in F.  So dividing by k gives us (*) holding in F.



 



Case 2: t is logarithmic over F.  Because of logarithmic differentiation



we may assume that the u's are monic and irreducible in t and distinct.



Furthermore, we may assume v has been decomposed into partial fractions.



The fractions can only be of the form f/g^j, where deg(f)<def(g) and g



is monic irreducible.  The fact that no terms outside of F appear on the



left hand side of (*), namely just a appears, means a lot of



cancellation



must be occuring.



 



Let t'=s'/s, for some s in F.  If f(t) is monic in F[t], then f(t)' is



also



in F[t], of one less degree.  Thus f(t) does not divide f(t)'.  In



particular,



all the u'/u terms are in lowest terms already.  In the f/g^j terms in



v,



we have a g^(j+1) denominator contribution in v' of the form



-jfg'/g^(j+1).



But g doesn't divide fg', so no cancellation occurs.  But no u'/u term



can



cancel, as the u's are irreducible, and no (**)/g^(j+1) term appears in



a, because a is a member of F.  Thus no f/g^j term occurs at all in v. 



But



then none of the u's can be outside of F, since nothing can cancel them.



(Remember the u's are distinct, monic, and irreducible.)  Thus each of



the



u's is in F already, and v is a polynomial.  But v' = a - expression in



u's,



so v' is in F also.  Thus v = b t + c for some b in con(F), c in F, by



lemma



2.  Then



 



                   u_1'            u_n'     s'



          a =  c_1 --- + ... + c_n --- + b --- + c'



                   u_1             u_n      s



 



is the desired form.  So case 2 holds.



 



Case 3: t is exponential over F.  So let t'/t=s' for some s in F.  As in



case 2 above, we may assume all the u's are monic, irreducible, and



distinct



and put v in partial fraction decomposition form.  Indeed the argument



is



identical as in case 2 until we try to conclude what form v is.  Here



lemma



3 tells us that v is a finite sum of terms b*t^j where each coefficient



is



in F.  Each of the u's is also in F, with the possible exception that



one



of them may be t.  Thus every u'/u term is in F, so again we conclude v'



is in F.  By lemma 3, v is in F.  So if every u is in F, a is in the



desired



form.  Otherwise, one of the u's, say u_n, is actually t, then 



 



                        u_1'



               a =  c_1 --- + ... + (c_n s + v)'



                        u_1



 



is the desired form.  So case 3 holds.



========================================================================
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The integral of x^x ... [That's how to write x to the power x

when writing in ASCII]



This antiderivative is not an "elementary function", which

means it cannot be written in terms of the functions you

meet in a calculus class.



Presumably the paper of Risch will refer to the theory of

integration in finite terms due to Liouville 1835.



Classic text on the subject:

 J. F. Ritt, _Integration in Finite Terms_ (Columbia Univ Pr, 1948)



Introductory papers, aimed at undergraduates:

 A.D. Fitt & G.T.Q. Hoare, "The closed-form integration of arbitrary

  functions". Mathematical Gazette (1993) 227--236.

 E. Marchisotto & G. Zakeri, "An invitation to integration in finite

  terms". College Math. J. 25 (1994) 295--308.

  

A modern text (omitting the algebraic case)

 M. Bronstein, _Symbolic Integration I: Transcendental Functions_

  (Springer-Verlag 1997)



Here is an old newsgroup post with some explanations...



   



http://correo.hispavista.com/Redirect/mathforum.org/discuss/sci.math/m/141335/141339











-- 

G. A. Edgar 

http://correo.hispavista.com/Redirect/www.math.ohio-state.edu/~edgar/
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[This post updates a 1995 post by Wiener also available at this site. --djr]







From: weemba@sagi.wistar.upenn.edu (Matthew P Wiener)



Subject: Re: Repost: Integral of x^x



Date: 30 Nov 1997 20:42:28 GMT



Newsgroups: sci.math



Keywords: Functions without elementary antiderivative



 



What's the antiderivative of exp(-x^2)? of sin(x)/x? of x^x?



------------------------------------------------------------------------



These, and some similar problems, can't be done.



 



More precisely, consider the notion of "elementary function".  These are



the functions that can be expressed in terms of exponentals and logarithms,



via the usual algebraic processes, including the solving (with or without



radicals) of polynomials.  Since the trigonometric functions and their



inverses can be expressed in terms of exponentials and logarithms using



the complex numbers C, these too are elementary.



 



The elementary functions are, so to speak, the "precalculus functions".



 



Then there is a theorem that says certain elementary functions do not



have an elementary antiderivative.  They still have antiderivatives,



but "they can't be done".  The more common ones get their own names.



Up to some scaling factors, "erf" is the antiderivative of exp(-x^2)



and "Si" is the antiderivative of sin(x)/x, and so on.



------------------------------------------------------------------------



For those with a little bit of undergraduate algebra, we sketch a proof



of these, and a few others, using the notion of a differential field.



These are fields (F,+,.,1,0) equipped with a derivation, that is, a



unary operator ' satisifying (a+b)'=a'+b' and (a.b)'=a.b'+a'.b.  Given



a differential field F, there is a subfield Con(F)={a:a'=0}, called the



_constants_ of F.  We let I(f) denote an antiderivative.  We ignore +cs.



 



Most examples in practice are subfields of M, the meromorphic functions



on C (or some domain).  Because of uniqueness of analytic extensions, one



rarely has to specify the precise domain.



 



Given differential fields F and G, with F a subfield of G, one calls G



an algebraic extension of F if G is a finite field extension of F.



 



One calls G a logarithmic extension of F if G=F(t) for some transcendental



t that satisfies t'=s'/s, some s in F.  We may think of t as log s, but



note that we are not actually talking about a logarithm function on F.  We



simply have a new element with the right derivative.  Other "logarithms"



would have to be adjoined as needed.



 



Similarly, one calls G an exponential extension of F if G=F(t) for some



transcendental t that satisfies t'=t.s', some s in F.  Again, we may



think of t as exp s, but there is no actual exponential function on F.



 



Finally, we call G an elementary differential extension of F if there is



a finite chain of subfields from F to G, each an algebraic, logarithmic,



or exponential extension of the next smaller field.



 



The following theorem, in the special case of M, is due to Liouville.  The



algebraic generality is due to Rosenlicht.  More powerful theorems have



been proven by Risch, Davenport, and others, and are at the heart of



symbolic integration packages.



 



A short proof, accessible to those with a solid background in undergraduate



algebra, can be found in Rosenlicht's AMM paper (see references).  It is



probably easier to master its applications first, which often use similar



techniques, and then learn the proof.



------------------------------------------------------------------------



MAIN THEOREM.  Let F,G be differential fields, let a be in F, let y be in G,



and suppose y'=a and G is an elementary differential extension field of F,



and Con(F)=Con(G).  Then there exist c_1,...,c_n in Con(F), u_1,...,u_n, v



in F such that



                           u_1'            u_n'



                 a  =  c_1 --- + ... + c_n --- + v'.



                           u_1             u_n



 



That is, the only functions that have elementary antiderivatives are the



ones that have this very specific form.  In words, elementary integrals



always consist of a function at the same algebraic "complexity" level as



the starting function (the v), along with the logarithms of functions at



the same algebraic "complexity" level (the u_i 's).



------------------------------------------------------------------------



This is a very useful theorem for proving non-integrability.  Because



this topic is of interest, but it is only written up in bits and pieces,



I give numerous examples.  (Since the original version of this FAQ from



way back when, two how-to-work-it write-ups have appeared.  See Fitt &



Hoare and Marchisotto & Zakeri in the references.)



 



In the usual case, F,G are subfields of M, so Con(F)=Con(G) always holds,



both being C.  As a side comment, we remark that this equality is necessary.



Over R(x), 1/(1+x^2) has an elementary antiderivative, but none of the above



form.



 



We first apply this theorem to the case of integrating f.exp(g), with f



and g rational functions.  If g=0, this is just f, which can be integrated



via partial fractions.  So assume g is nonzero.  Let t=exp(g), so t'=g't.



Since g is not zero, it has a pole somewhere (perhaps out at infinity),



so exp(g) has an essential singularity, and thus t is transcendental over



C(z).  Let F=C(z)(t), and let G be an elementary differential extension



containing an antiderivative for f.t.



 



Then Liouville's theorem applies, so we can write



 



                        u_1'            u_n'



             f.t =  c_1 --- + ... + c_n --- + v'



                        u_1             u_n



 



with the c_i constants and the u_i and v in F.  Each u_i is a ratio of



two C(z)[t] polynomials, U/V say.  But (U/V)'/(U/V)=U'/U-V'/V (quotient



rule), so we may rewrite the above and assume each u_i is in C(z)[t].



And if any u_i=U.V factors, then (U.V)'/(U.V)=U'/U+V'/V and so we can



further assume each u_i is irreducible over C(z).



 



What does a typical u'/u look like?  For example, consider the case of u



quadratic in t.  If A,B,C are rational functions in C(z), then A',B',C'



are also rational functions in C(z) and



 



        (A.t^2+B.t+C)'    A'.t^2 + 2At(gt) + B'.t + B.(gt) + C'



        -------------  =  -------------------------------------



         A.t^2+B.t+C               A.t^2 + B.t + C



 



                          (A'+2Ag).t^2 + (B'+Bg).t + C'



                       =  -----------------------------   .



                                 A.t^2 + B.t + C



 



(Note that contrary to the usual situation, the degree of a polynomial



in t stays the same after differentiation.  That is because we are



taking derivatives with respect to z, not t.  If we write this out



explicitly, we get (t^n)' = exp(ng)' = ng'.exp(ng) = ng'.t^n.)



 



In general, each u'/u is a ratio of polynomials of the same degree.  We



can, by doing one step of a long division, also write it as D+R/u, for



some D in C(z) and R in C(z)[t], with deg(R)<deg(u).



 



By taking partial fractions, we can write v as a sum of a C(z)[t] polynomial



and some fractions P/Q^n with deg(P)<deg(Q), Q irreducible, with each P,Q



in C(z)[t].  v' will thus be a polynomial plus partial fraction like terms.



 



Somehow, this is supposed to come out to just f.t.  By the uniqueness of



partial fraction decompositions, all terms other than multiples of t add



up to 0.  Only the polynomial part of v can contribute to f.t, and this



must be a monomial over C(z).  So f.t=(h.t)', for some rational h.  (The



temptation to assert v=h.t here is incorrect, as there could be some C(z)



term, cancelled by u'/u terms.  We only need to identify the terms in v



that contribute to f.t, so this does not matter.)



 



Summarizing, if f.exp(g) has an elementary antiderivative, with f and g



rational functions, g nonzero, then it is of the form h.exp(g), with h



rational.



 



We work out particular examples, of this and related applications.  A



bracketed function can be reduced to the specified example by a change



of variables.



 



**      exp(z^2)        [sqrt(z).exp(z),exp(z)/sqrt(z)]



 



Let h.exp(z^2) be its antiderivative.  Then h'+2zh=1.  Solving this ODE



gives h=exp(-z^2)*I(exp(z^2)), which has no pole (except perhaps at



infinity), so h, if rational, must be a polynomial.  But the derivative



of h cannot cancel the leading power of 2zh, contradiction.



 



**      exp(z)/z        [exp(exp(z)),1/log(z)]



 



Let h.exp(z) be an antiderivative.  Then h'+h=1/z.  I know of two quick



ways to prove that h is not rational.



 



One can explicitly solve the first order ODE (getting exp(-z)*I(exp(z)/z)),



and then notice that the solution has a logarithmic singularity at zero.



For example, h(z)->oo but sqrt(z)*h(z)->0 as z->0.  No rational function



does this.



 



Or one can assume h has a partial fraction decomposition.  Obviously no h'



term will give 1/z, so 1/z must be present in h already. But (1/z)'=-1/z^2,



and this is part of h'.  So there is a 1/z^2 in h to cancel this.  But



(1/z^2) is -2/z^3, and this is again part of h'.  And again, something



in h cancels this, etc etc etc.  This infinite regression is impossible.



 



**      sin(z)/z        [sin(exp(z))]



**      sin(z^2)        [sqrt(z).sin(z),sin(z)/sqrt(z)]



 



Since sin(z)=%[exp(iz)-exp(-iz)] (where %=1/2i), we merely rework the



above f.exp(g) result.  Let f be rational, let t=exp(iz) (so t'/t=i) and



let T=exp(iz^2) (so T'/T=2iz) and we want an antiderivative of either



%f.(t-1/t) or T-1/T.  For the former, the same partial fraction results



still apply in identifying %f.t=(h.t)'=(h'+ih).t, which can't happen, as



above.  In the case of sin(z^2), we want %T=(h.T)'=(h'+2izh).T, and again,



this can't happen, as above.



 



Although done, we push this analysis further in the f.sin(z)/z case, as



there are extra terms hanging around.  This time around, the conclusion



gives an additional k/t term inside v, so we have -%f/t=(k/t)'=(k'-ik)/t.



So the antiderivative of %f*(t-1/t) is h.t+k/t.



 



If f is even and real, then h and k (like t=exp(iz) and 1/t=exp(-iz)) are



parity flips of each other, so (as expected) the antiderivative is even.



Letting C=cos(z), S=sin(z), h=H+iF and k=K+iG, the real (and only) part



of the antiderivative of f is (HC-FS)+(KC+GS)=(H+K)C+(G-F)S.  So over



the reals, we find that the antiderivative of (rational even).sin(x) is



of the form (rational even).cos(x)+ (rational odd).sin(x).



 



A similar result holds for (odd).sin(x), (even).cos(x), (odd).cos(x).  And



since a rational function is the sum of its (rational) even and odd parts,



(rational).sin integrates to (rational).sin + (rational).cos, or not at all.



 



Let's backtrack, and apply this to sin(x)/x directly, using reals only.



If it has an elementary antiderivative, it must be of the form E.S+O.C.



Taking derivatives gives (E'-O).S+(E+O').C.  As with partial fractions,



we have a unique R(x)[S,C] representation here (this is a bit tricky,



as S^2=1-C^2: this step can be proven directly or via solving for t,1/t



coefficients over C).  So E'-O=1/x and E+O'=0, or O''+O=-1/x.  Expressing



O in partial fraction form, it is clear only (-1/x) in O can contribute



a -1/x.  So there is a -2/x^3 term in O'', so there is a 2/x^3 term in



O to cancel it, and so on, an infinite regress.  Hence, there is no such



rational O.



 



**      arcsin(z)/z     [z.tan(z)]



 



We consider the case where F=C(z,Z)(t) as a subfield of the meromorphic



functions on some domain, where z is the identify function, Z=sqrt(1-z^2),



and t=arcsin z.  Then Z'=-z/Z, and t'=1/Z.  We ask in the main theorem



result if this can happen with a=t/z and some field G.  t is transcendental



over C(z,Z), since it has infinite branch points.



 



So we consider the more general situation of f(z).arcsin(z) where f(z)



is rational in z and sqrt(1-z^2).  By letting z=2w/(1+w^2), note that



members of C(z,Z) are always elementarily integrable.



 



Because x^2+y^2-1 is irreducible, C[x,y]/(x^2+y^2-1) is an integral domain,



C(z,Z) is isomorphic to its field of quotients in the obvious manner, and



C(z,Z)[t] is a UFD whose field of quotients is amenable to partial fraction



analysis in the variable t.  What follows takes place at times in various



z-algebraic extensions of C(z,Z) (which may not have unique factorization),



but the terms must combine to give something in C(z,Z)(t), where partial



fraction decompositions are unique, and hence the t term will be as claimed.



 



Thus, if we can integrate f(z).arcsin(z), we have f.t = sum of (u'/u)s



and v', by the main theorem.



 



The u terms can, by logarithmic differentiation in the appropriate



algebraic extension field (recall that roots are analytic functions of



the coefficients, and t is transcendental over C(z,Z)), be assumed to



all be linear t+r, with r algebraic over z.  Then u'/u=(1/Z+r')/(t+r).



When we combine such terms back in C(z,Z), they don't form a t term



(nor any higher power of t, nor a constant).



 



Partial fraction decomposition of v gives us a polynomial in t, with



coefficients in C(z,Z), plus multiples of powers of linear t terms.



The latter don't contribute to a t term, as above.



 



If the polynomial is linear or quadratic, say v=g.t^2 + h.t + k, then



v'=g'.t^2 + (2g/Z+h').t + (h/Z+k').  Nothing can cancel the g', so g



is just a constant c.  Then 2c/Z+h'=f or I(f.t)=2c.t+I(h'.t).  The



I(h'.t) can be integrated by parts.  So the antiderivative works out



to c.(arcsin(z))^2 + h(z).arcsin(z) - I(h(z)/sqrt(1-z^2)), and as



observed above, the latter is elementary.



 



If the polynomial is cubic or higher, let v=A.t^n+B.t^(n-1)+...., then



v'=A'.t^n + (n.A/Z+B').t^(n-1) +....  A must be a constant c.  But then



nc/Z+B'=0, so B=-nct, contradicting B being in C(z,Z).



 



In particular, since 1/z + c/sqrt(1-z^2) does not have a rational in



"z and/or sqrt(1-z^2)" antiderivative, arcsin(z)/z does not have an



elementary integral.



 



**      z^z



 



In this case, let F=C(z,l)(t), the field of rational functions in z,l,t,



where l=log z and t=exp(z.l)=z^z.  Note that z,l,t are algebraically



independent.  Then t'=(l+1).t, so for a=t in the main theorem, the



partial fraction analysis shows that the only possibility is for



v=w.t+... to be the source of the t term on the left, with w in C(z,l).



 



So this means, equating t coefficients, 1=w'+(l+1)w.  This is a first



order ODE, whose solution is w=I(z^z)/z^z.  So we must prove that no



such w exists in C(z,l).  So suppose w=P/Q, with P,Q in C[z,l] and no



common factors.  Then z^z=(z^z*P/Q)'=z^z*[(1+l)PQ+P'Q-PQ']/Q^2, or



Q^2=(1+l)PQ+P'Q-PQ'.  So Q|Q', meaning Q is a constant, which we may



assume to be one.  So we have it down to P'+P+lP=1.



 



Let P=Sum[P_i l^i], with P_i, i=0...n in C[z].  But then in our equation,



there's a dangling P_n l^(n+1) term, a contradiction.



------------------------------------------------------------------------



On a slight tangent, this theorem of Liouville will not tell you that



Bessel functions are not elementary, since they are defined by second



order ODEs.  This can be proven using differential Galois theory.  A



variant of the above theorem of Liouville, with a different normal form,



does show however that J_0 cannot be integrated in terms of elementary



methods augmented with Bessel functions.



===================================================================================================







What follows is a fairly complete sketch of the proof of the Main Theorem.



First, I just state some easy (if you've had Galois Theory 101) lemmas.



Throughout the lemmas F is a differential field, and t is transcendental



over F.



 



Lemma 1: If K is an algebraic extension field of F, then there exists a



unique way to extend the derivation map from F to K so as to make K into



a differential field.



 



Lemma 2: If K=F(t) is a differential field with derivation extending F's,



and t' is in F, then for any polynomial f(t) in F[t], f(t)' is a polynomial



in F[t] of the same degree (if the leading coefficient is not in Con(F))



or of degree one less (if the leading coefficient is in Con(F)).



 



Lemma 3: If K=F(t) is a differential field with derivation extending F's,



and t'/t is in F, then for any a in F, n a positive integer, there exists



h in F such that (a*t^n)'=h*t^n.  More generally, if f(t) is any polynomial



in F[t], then f(t)' is of the same degree as f(t), and is a multiple of



f(t) iff f(t) is a monomial.



 



These are all fairly elementary.  For example, (a*t^n)'=(a'+at'/t)*t^n



in lemma 3.  The final 'iff' in lemma 3 is where transcendence of t comes



in.  Lemma 1 in the usual case of subfields of M is an easy consequence



of the implicit function theorem.



--------------------------------------------------------------------------



MAIN THEOREM.  Let F,G be differential fields, let a be in F, let y be in G,



and suppose y'=a and G is an elementary differential extension field of F,



and Con(F)=Con(G).  Then there exist c_1,...,c_n in Con(F), u_1,...,u_n, v



in F such that



                        u_1'            u_n'



               a =  c_1 --- + ... + c_n --- + v'.



                        u_1             u_n



 



In other words, the only functions that have elementary antiderivatives



are the ones that have this very specific form.



------------------------------------------------------------------------



Proof:



 



By assumption there exists a finite chain of fields connecting F to G



such that the extension from one field to the next is given by performing



an algebraic, logarithmic, or exponential extension.  We show that if the



form (*) can be satisfied with values in F2, and F2 is one of the three



kinds of allowable extensions of F1, then the form (*) can be satisfied



in F1.  The form (*) is obviously satisfied in G: let all the c's be 0, the



u's be 1, and let v be the original y for which y'=a.  Thus, if the form



(*) can be pulled down one field, we will be able to pull it down to F,



and the theorem holds.



 



So we may assume without loss of generality that G=F(t).



 



Case 1: t is algebraic over F.  Say t is of degree k.  Then there are



polynomials U_i and V such that U_i(t)=u_i and V(t)=v.  So we have



 



                        U_1(t)'            U_n(t)'



               a =  c_1 ------ + ... + c_n ------ + V(t)'.



                        U_1(t)             U_n(t)



 



Now, by the uniqueness of extensions of derivatives in the algebraic case,



we may replace t by any of its conjugates t_1,..., t_k, and the same equation



holds.  In other words, because a is in F, it is fixed under the Galois



automorphisms.  Summing up over the conjugates, and converting the U'/U



terms into products using logarithmic differentiation, we have



 



            [U_1(t_1)*...*U_1(t_k)]'



 k a =  c_1 ----------------------- + ...  + [V(t_1)+...+V(t_k)]'.



             U_1(t_1)*...*U_n(t_k)



 



But the expressions in [...] are symmetric polynomials in t_i, and as



they are polynomials with coefficients in F, the resulting expressions



are in F.  So dividing by k gives us (*) holding in F.



 



Case 2: t is logarithmic over F.  Because of logarithmic differentiation



we may assume that the u's are monic and irreducible in t and distinct.



Furthermore, we may assume v has been decomposed into partial fractions.



The fractions can only be of the form f/g^j, where deg(f)<def(g) and g



is monic irreducible.  The fact that no terms outside of F appear on the



left hand side of (*), namely just a appears, means a lot of cancellation



must be occuring.



 



Let t'=s'/s, for some s in F.  If f(t) is monic in F[t], then f(t)' is also



in F[t], of one less degree.  Thus f(t) does not divide f(t)'.  In particular,



all the u'/u terms are in lowest terms already.  In the f/g^j terms in v,



we have a g^(j+1) denominator contribution in v' of the form -jfg'/g^(j+1).



But g doesn't divide fg', so no cancellation occurs.  But no u'/u term can



cancel, as the u's are irreducible, and no (**)/g^(j+1) term appears in



a, because a is a member of F.  Thus no f/g^j term occurs at all in v.  But



then none of the u's can be outside of F, since nothing can cancel them.



(Remember the u's are distinct, monic, and irreducible.)  Thus each of the



u's is in F already, and v is a polynomial.  But v' = a - expression in u's,



so v' is in F also.  Thus v = b t + c for some b in con(F), c in F, by lemma



2.  Then



 



                   u_1'            u_n'     s'



          a =  c_1 --- + ... + c_n --- + b --- + c'



                   u_1             u_n      s



 



is the desired form.  So case 2 holds.



 



Case 3: t is exponential over F.  So let t'/t=s' for some s in F.  As in



case 2 above, we may assume all the u's are monic, irreducible, and distinct



and put v in partial fraction decomposition form.  Indeed the argument is



identical as in case 2 until we try to conclude what form v is.  Here lemma



3 tells us that v is a finite sum of terms b*t^j where each coefficient is



in F.  Each of the u's is also in F, with the possible exception that one



of them may be t.  Thus every u'/u term is in F, so again we conclude v'



is in F.  By lemma 3, v is in F.  So if every u is in F, a is in the desired



form.  Otherwise, one of the u's, say u_n, is actually t, then 



 



                        u_1'



               a =  c_1 --- + ... + (c_n s + v)'



                        u_1



 



is the desired form.  So case 3 holds.



===================================================================================================
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Ignacio   Darnaude   Rojas - Marcos

Cabeza  del  Rey  Don  Pedro , 9  (  2º  B  )
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                Dear Sirs ,









                Please first realize this unexpectod request is not a routine petition at all , but an old unresolved soul?problem to the writer , a graduated in Economics and by the way enamoured of Mathematics , his second lifelong love affair.    ( He is , too , fallen in love with some imaginable  sort of solution to the handsome exponential equation             "A   elevated to   x   +    B   elevated to    x      =      C "  ).                                            ( A ^x  +  B ^x = C ).









                I am	extremely interested 	in finding finally, after many years of fruitless search , the rather arcane answer to my personal   "Fermat  Last  Theorem"  ,  I 	think an easy task for  Euler   or   Galois    :     the mysterious integral 

which reads as follows    :                                  



                                                     

"Indefinite  integral  of      X     elevated  to    x     by  differential     x"           [ Integral X power x dx ][Integral  X  to the power  x  dx  ]:                     







S  X ^ x  dx









               In other words I am looking for some elusive antiderivative algebraical function that , derived , result into a beautifully complex and elegant  potential?exponential  expression   :    X   elevated to   x.  [ X ^ x  ].









              Be sure this remote friend Ignacio would be delighted if you wisely make the  Sevillian  happy by means of forwarding him his keenly wanted explanation of this	damned integral , send him the address of possible academic sources of information  ( the most prestigious worldwide university departments especialized in  Math )	, or specific bibliography dealing with the above mentioned          "Integral of    X    elevetad to    x     differential    x"     :      S  X ^ x  dx .









[ In respect to the above mentioned integral  S X^x dx  ,      I refer to the paper by  Robert H.Risch    The problem of integration in finite terms   ( Transactions of the  American Mathematical Society  ,  Vol. 139  ,  ( 1969 )  ,          pages  167-189  )  ]. 





               



         I remain mathematically and of course humanly grateful to you for such an integral informative favour.









         With my warmest regards
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