Ignacio Darnaude Rojas�Marcos


Cabeza del Rey Don Pedro , 9  ( 2º B )


41004 � Sevilla  ( Spain )














                Dear Sirs ,














                Please first realize this unexpectod request is not a routine petition at all , but an old unresolved soul�problem to the writer , a graduated in Economics and by the way enamoured of Mathematics , his second lifelong love affair.    ( He is , too , fallen in love with some imaginable  sort of solution to the handsome exponential equation             “A   elevated to   x   plus    B   elevated to    x      =      C    elevated to   x” ).   














                I am	extremely interested 	in finding finally, after many years of fruitless search , the rather arcane answer to my personal   “Fermat  Last  Theorem”  ,  I 	think an easy task for  Euler   or   Galois    :     the mysterious integral 


which reads as follows    :                                  





                                                     


"Indefinite  integral  of      X     elevated  to    x     by  differential     x"  :                     








x


S  X   dx














               In other words I am looking for some elusive primitive algebraical function that , derived , result into a beautifully complex and elegant  potential�exponential  expression   :    X   elevated to   x.














              














               Be sure this remote friend Ignacio would be delighted if you wisely make the  Sevillian  happy by means of forwarding him his keenly wanted explanation of this	damned integral , send him the address of possible academic sources of information  ( the most prestigious worldwide university departments especialized in  Math )	, or specific bibliography dealing with the above mentioned                   “Integral of    X    elevetad to    x     differential    x”.














               I remain mathematically and of course humanly grateful to you for such an integral informative favour.














                With my warmest regards





























INTEGRAL  S X^x dx , TEOREMAS DE       EDGAR       Y            WIENER
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What's the antiderivative of exp(-x^2)? , of sin(x)/x?,     of x^x?





------------------------------------------------------------------------





These, and some similar problems, can't be done.





 





More precisely, consider the notion of "elementary function".  These are





the functions that can be expressed in terms of exponentals and





logarithms,





via the usual algebraic processes, including the solving (with or





without





radicals) of polynomials.  Since the trigonometric functions and their





inverses can be expressed in terms of exponentials and logarithms using





the complex numbers C, these too are elementary.





 





The elementary functions are, so to speak, the "precalculus functions".





 





Then there is a theorem that says certain elementary functions do not





have an elementary antiderivative.  They still have antiderivatives,





but "they can't be done".  The more common ones get their own names.





Up to some scaling factors, "erf" is the antiderivative of exp(-x^2)





and "Si" is the antiderivative of sin(x)/x, and so on.





------------------------------------------------------------------------





For those with a little bit of undergraduate algebra, we sketch a proof





of these, and a few others, using the notion of a differential field.





These are fields (F,+,.,1,0) equipped with a derivation, that is, a





unary operator ' satisifying (a+b)'=a'+b' and (a.b)'=a.b'+a'.b.  Given





a differential field F, there is a subfield Con(F)={a:a'=0}, called the





_constants_ of F.  We let I(f) denote an antiderivative.  We ignore +cs.





 





Most examples in practice are subfields of M, the meromorphic functions





on C (or some domain).  Because of uniqueness of analytic extensions,





one





rarely has to specify the precise domain.





 





Given differential fields F and G, with F a subfield of G, one calls G





an algebraic extension of F if G is a finite field extension of F.





 





One calls G a logarithmic extension of F if G=F(t) for some





transcendental





t that satisfies t'=s'/s, some s in F.  We may think of t as log s, but





note that we are not actually talking about a logarithm function on F. 





We





simply have a new element with the right derivative.  Other "logarithms"





would have to be adjoined as needed.





 





Similarly, one calls G an exponential extension of F if G=F(t) for some





transcendental t that satisfies t'=t.s', some s in F.  Again, we may





think of t as exp s, but there is no actual exponential function on F.





 





Finally, we call G an elementary differential extension of F if there is





a finite chain of subfields from F to G, each an algebraic, logarithmic,





or exponential extension of the next smaller field.





 





The following theorem, in the special case of M, is due to Liouville. 





The





algebraic generality is due to Rosenlicht.  More powerful theorems have





been proven by Risch, Davenport, and others, and are at the heart of





symbolic integration packages.





 





A short proof, accessible to those with a solid background in





undergraduate





algebra, can be found in Rosenlicht's AMM paper (see references).  It is





probably easier to master its applications first, which often use





similar





techniques, and then learn the proof.





------------------------------------------------------------------------





MAIN THEOREM.  Let F,G be differential fields, let a be in F, let y be





in G,





and suppose y'=a and G is an elementary differential extension field of





F,





and Con(F)=Con(G).  Then there exist c_1,...,c_n in Con(F),





u_1,...,u_n, v





in F such that





                           u_1'            u_n'





                 a  =  c_1 --- + ... + c_n --- + v'.





                           u_1             u_n





 





That is, the only functions that have elementary antiderivatives are the





ones that have this very specific form.  In words, elementary integrals





always consist of a function at the same algebraic "complexity" level as





the starting function (the v), along with the logarithms of functions at





the same algebraic "complexity" level (the u_i 's).





------------------------------------------------------------------------





This is a very useful theorem for proving non-integrability.  Because





this topic is of interest, but it is only written up in bits and pieces,





I give numerous examples.  (Since the original version of this FAQ from





way back when, two how-to-work-it write-ups have appeared.  See Fitt &





Hoare and Marchisotto & Zakeri in the references.)





 





In the usual case, F,G are subfields of M, so Con(F)=Con(G) always





holds,





both being C.  As a side comment, we remark that this equality is





necessary.





Over R(x), 1/(1+x^2) has an elementary antiderivative, but none of the





above





form.





 





We first apply this theorem to the case of integrating f.exp(g), with f





and g rational functions.  If g=0, this is just f, which can be





integrated





via partial fractions.  So assume g is nonzero.  Let t=exp(g), so





t'=g't.





Since g is not zero, it has a pole somewhere (perhaps out at infinity),





so exp(g) has an essential singularity, and thus t is transcendental





over





C(z).  Let F=C(z)(t), and let G be an elementary differential extension





containing an antiderivative for f.t.





 





Then Liouville's theorem applies, so we can write





 





                        u_1'            u_n'





             f.t =  c_1 --- + ... + c_n --- + v'





                        u_1             u_n





 





with the c_i constants and the u_i and v in F.  Each u_i is a ratio of





two C(z)[t] polynomials, U/V say.  But (U/V)'/(U/V)=U'/U-V'/V (quotient





rule), so we may rewrite the above and assume each u_i is in C(z)[t].





And if any u_i=U.V factors, then (U.V)'/(U.V)=U'/U+V'/V and so we can





further assume each u_i is irreducible over C(z).





 





What does a typical u'/u look like?  For example, consider the case of u





quadratic in t.  If A,B,C are rational functions in C(z), then A',B',C'





are also rational functions in C(z) and





 





        (A.t^2+B.t+C)'    A'.t^2 + 2At(gt) + B'.t + B.(gt) + C'





        -------------  =  -------------------------------------





         A.t^2+B.t+C               A.t^2 + B.t + C





 





                          (A'+2Ag).t^2 + (B'+Bg).t + C'





                       =  -----------------------------   .





                                 A.t^2 + B.t + C





 





(Note that contrary to the usual situation, the degree of a polynomial





in t stays the same after differentiation.  That is because we are





taking derivatives with respect to z, not t.  If we write this out





explicitly, we get (t^n)' = exp(ng)' = ng'.exp(ng) = ng'.t^n.)





 





In general, each u'/u is a ratio of polynomials of the same degree.  We





can, by doing one step of a long division, also write it as D+R/u, for





some D in C(z) and R in C(z)[t], with deg(R)<deg(u).





 





By taking partial fractions, we can write v as a sum of a C(z)[t]





polynomial





and some fractions P/Q^n with deg(P)<deg(Q), Q irreducible, with each





P,Q





in C(z)[t].  v' will thus be a polynomial plus partial fraction like





terms.





 





Somehow, this is supposed to come out to just f.t.  By the uniqueness of





partial fraction decompositions, all terms other than multiples of t add





up to 0.  Only the polynomial part of v can contribute to f.t, and this





must be a monomial over C(z).  So f.t=(h.t)', for some rational h.  (The





temptation to assert v=h.t here is incorrect, as there could be some





C(z)





term, cancelled by u'/u terms.  We only need to identify the terms in v





that contribute to f.t, so this does not matter.)





 





Summarizing, if f.exp(g) has an elementary antiderivative, with f and g





rational functions, g nonzero, then it is of the form h.exp(g), with h





rational.





 





We work out particular examples, of this and related applications.  A





bracketed function can be reduced to the specified example by a change





of variables.





 





**      exp(z^2)        [sqrt(z).exp(z),exp(z)/sqrt(z)]





 





Let h.exp(z^2) be its antiderivative.  Then h'+2zh=1.  Solving this ODE





gives h=exp(-z^2)*I(exp(z^2)), which has no pole (except perhaps at





infinity), so h, if rational, must be a polynomial.  But the derivative





of h cannot cancel the leading power of 2zh, contradiction.





 





**      exp(z)/z        [exp(exp(z)),1/log(z)]





 





Let h.exp(z) be an antiderivative.  Then h'+h=1/z.  I know of two quick





ways to prove that h is not rational.





 





One can explicitly solve the first order ODE (getting





exp(-z)*I(exp(z)/z)),





and then notice that the solution has a logarithmic singularity at zero.





For example, h(z)->oo but sqrt(z)*h(z)->0 as z->0.  No rational function





does this.





 





Or one can assume h has a partial fraction decomposition.  Obviously no





h'





term will give 1/z, so 1/z must be present in h already. But





(1/z)'=-1/z^2,





and this is part of h'.  So there is a 1/z^2 in h to cancel this.  But





(1/z^2) is -2/z^3, and this is again part of h'.  And again, something





in h cancels this, etc etc etc.  This infinite regression is impossible.





 





**      sin(z)/z        [sin(exp(z))]





**      sin(z^2)        [sqrt(z).sin(z),sin(z)/sqrt(z)]





 





Since sin(z)=%[exp(iz)-exp(-iz)] (where %=1/2i), we merely rework the





above f.exp(g) result.  Let f be rational, let t=exp(iz) (so t'/t=i) and





let T=exp(iz^2) (so T'/T=2iz) and we want an antiderivative of either





%f.(t-1/t) or T-1/T.  For the former, the same partial fraction results





still apply in identifying %f.t=(h.t)'=(h'+ih).t, which can't happen, as





above.  In the case of sin(z^2), we want %T=(h.T)'=(h'+2izh).T, and





again,





this can't happen, as above.





 





Although done, we push this analysis further in the f.sin(z)/z case, as





there are extra terms hanging around.  This time around, the conclusion





gives an additional k/t term inside v, so we have





-%f/t=(k/t)'=(k'-ik)/t.





So the antiderivative of %f*(t-1/t) is h.t+k/t.





 





If f is even and real, then h and k (like t=exp(iz) and 1/t=exp(-iz))





are





parity flips of each other, so (as expected) the antiderivative is even.





Letting C=cos(z), S=sin(z), h=H+iF and k=K+iG, the real (and only) part





of the antiderivative of f is (HC-FS)+(KC+GS)=(H+K)C+(G-F)S.  So over





the reals, we find that the antiderivative of (rational even).sin(x) is





of the form (rational even).cos(x)+ (rational odd).sin(x).





 





A similar result holds for (odd).sin(x), (even).cos(x), (odd).cos(x). 





And





since a rational function is the sum of its (rational) even and odd





parts,





(rational).sin integrates to (rational).sin + (rational).cos, or not at





all.





 





Let's backtrack, and apply this to sin(x)/x directly, using reals only.





If it has an elementary antiderivative, it must be of the form E.S+O.C.





Taking derivatives gives (E'-O).S+(E+O').C.  As with partial fractions,





we have a unique R(x)[S,C] representation here (this is a bit tricky,





as S^2=1-C^2: this step can be proven directly or via solving for t,1/t





coefficients over C).  So E'-O=1/x and E+O'=0, or O''+O=-1/x. 





Expressing





O in partial fraction form, it is clear only (-1/x) in O can contribute





a -1/x.  So there is a -2/x^3 term in O'', so there is a 2/x^3 term in





O to cancel it, and so on, an infinite regress.  Hence, there is no such





rational O.





 





**      arcsin(z)/z     [z.tan(z)]





 





We consider the case where F=C(z,Z)(t) as a subfield of the meromorphic





functions on some domain, where z is the identify function,





Z=sqrt(1-z^2),





and t=arcsin z.  Then Z'=-z/Z, and t'=1/Z.  We ask in the main theorem





result if this can happen with a=t/z and some field G.  t is





transcendental





over C(z,Z), since it has infinite branch points.





 





So we consider the more general situation of f(z).arcsin(z) where f(z)





is rational in z and sqrt(1-z^2).  By letting z=2w/(1+w^2), note that





members of C(z,Z) are always elementarily integrable.





 





Because x^2+y^2-1 is irreducible, C[x,y]/(x^2+y^2-1) is an integral





domain,





C(z,Z) is isomorphic to its field of quotients in the obvious manner,





and





C(z,Z)[t] is a UFD whose field of quotients is amenable to partial





fraction





analysis in the variable t.  What follows takes place at times in





various





z-algebraic extensions of C(z,Z) (which may not have unique





factorization),





but the terms must combine to give something in C(z,Z)(t), where partial





fraction decompositions are unique, and hence the t term will be as





claimed.





 





Thus, if we can integrate f(z).arcsin(z), we have f.t = sum of (u'/u)s





and v', by the main theorem.





 





The u terms can, by logarithmic differentiation in the appropriate





algebraic extension field (recall that roots are analytic functions of





the coefficients, and t is transcendental over C(z,Z)), be assumed to





all be linear t+r, with r algebraic over z.  Then u'/u=(1/Z+r')/(t+r).





When we combine such terms back in C(z,Z), they don't form a t term





(nor any higher power of t, nor a constant).





 





Partial fraction decomposition of v gives us a polynomial in t, with





coefficients in C(z,Z), plus multiples of powers of linear t terms.





The latter don't contribute to a t term, as above.





 





If the polynomial is linear or quadratic, say v=g.t^2 + h.t + k, then





v'=g'.t^2 + (2g/Z+h').t + (h/Z+k').  Nothing can cancel the g', so g





is just a constant c.  Then 2c/Z+h'=f or I(f.t)=2c.t+I(h'.t).  The





I(h'.t) can be integrated by parts.  So the antiderivative works out





to c.(arcsin(z))^2 + h(z).arcsin(z) - I(h(z)/sqrt(1-z^2)), and as





observed above, the latter is elementary.





 





If the polynomial is cubic or higher, let v=A.t^n+B.t^(n-1)+...., then





v'=A'.t^n + (n.A/Z+B').t^(n-1) +....  A must be a constant c.  But then





nc/Z+B'=0, so B=-nct, contradicting B being in C(z,Z).





 





In particular, since 1/z + c/sqrt(1-z^2) does not have a rational in





"z and/or sqrt(1-z^2)" antiderivative, arcsin(z)/z does not have an





elementary integral.





 





**      z^z





 





In this case, let F=C(z,l)(t), the field of rational functions in z,l,t,





where l=log z and t=exp(z.l)=z^z.  Note that z,l,t are algebraically





independent.  Then t'=(l+1).t, so for a=t in the main theorem, the





partial fraction analysis shows that the only possibility is for





v=w.t+... to be the source of the t term on the left, with w in C(z,l).





 





So this means, equating t coefficients, 1=w'+(l+1)w.  This is a first





order ODE, whose solution is w=I(z^z)/z^z.  So we must prove that no





such w exists in C(z,l).  So suppose w=P/Q, with P,Q in C[z,l] and no





common factors.  Then z^z=(z^z*P/Q)'=z^z*[(1+l)PQ+P'Q-PQ']/Q^2, or





Q^2=(1+l)PQ+P'Q-PQ'.  So Q|Q', meaning Q is a constant, which we may





assume to be one.  So we have it down to P'+P+lP=1.





 





Let P=Sum[P_i l^i], with P_i, i=0...n in C[z].  But then in our





equation,





there's a dangling P_n l^(n+1) term, a contradiction.





------------------------------------------------------------------------





On a slight tangent, this theorem of Liouville will not tell you that





Bessel functions are not elementary, since they are defined by second





order ODEs.  This can be proven using differential Galois theory.  A





variant of the above theorem of Liouville, with a different normal form,





does show however that J_0 cannot be integrated in terms of elementary





methods augmented with Bessel functions.





===================================================================================================





What follows is a fairly complete sketch of the proof of the Main





Theorem.





First, I just state some easy (if you've had Galois Theory 101) lemmas.





Throughout the lemmas F is a differential field, and t is transcendental





over F.





 





Lemma 1: If K is an algebraic extension field of F, then there exists a





unique way to extend the derivation map from F to K so as to make K into





a differential field.





 





Lemma 2: If K=F(t) is a differential field with derivation extending





F's,





and t' is in F, then for any polynomial f(t) in F[t], f(t)' is a





polynomial





in F[t] of the same degree (if the leading coefficient is not in Con(F))





or of degree one less (if the leading coefficient is in Con(F)).





 





Lemma 3: If K=F(t) is a differential field with derivation extending





F's,





and t'/t is in F, then for any a in F, n a positive integer, there





exists





h in F such that (a*t^n)'=h*t^n.  More generally, if f(t) is any





polynomial





in F[t], then f(t)' is of the same degree as f(t), and is a multiple of





f(t) iff f(t) is a monomial.





 





These are all fairly elementary.  For example, (a*t^n)'=(a'+at'/t)*t^n





in lemma 3.  The final 'iff' in lemma 3 is where transcendence of t





comes





in.  Lemma 1 in the usual case of subfields of M is an easy consequence





of the implicit function theorem.





-------------------------------------------------------------------------





-





MAIN THEOREM.  Let F,G be differential fields, let a be in F, let y be





in G,





and suppose y'=a and G is an elementary differential extension field of





F,





and Con(F)=Con(G).  Then there exist c_1,...,c_n in Con(F),





u_1,...,u_n, v





in F such that





                        u_1'            u_n'





               a =  c_1 --- + ... + c_n --- + v'.





                        u_1             u_n





 





In other words, the only functions that have elementary antiderivatives





are the ones that have this very specific form.





------------------------------------------------------------------------





Proof:





 





By assumption there exists a finite chain of fields connecting F to G





such that the extension from one field to the next is given by





performing





an algebraic, logarithmic, or exponential extension.  We show that if





the





form (*) can be satisfied with values in F2, and F2 is one of the three





kinds of allowable extensions of F1, then the form (*) can be satisfied





in F1.  The form (*) is obviously satisfied in G: let all the c's be 0,





the





u's be 1, and let v be the original y for which y'=a.  Thus, if the form





(*) can be pulled down one field, we will be able to pull it down to F,





and the theorem holds.





 





So we may assume without loss of generality that G=F(t).





 





Case 1: t is algebraic over F.  Say t is of degree k.  Then there are





polynomials U_i and V such that U_i(t)=u_i and V(t)=v.  So we have





 





                        U_1(t)'            U_n(t)'





               a =  c_1 ------ + ... + c_n ------ + V(t)'.





                        U_1(t)             U_n(t)





 





Now, by the uniqueness of extensions of derivatives in the algebraic





case,





we may replace t by any of its conjugates t_1,..., t_k, and the same





equation





holds.  In other words, because a is in F, it is fixed under the Galois





automorphisms.  Summing up over the conjugates, and converting the U'/U





terms into products using logarithmic differentiation, we have





 





            [U_1(t_1)*...*U_1(t_k)]'





 k a =  c_1 ----------------------- + ...  + [V(t_1)+...+V(t_k)]'.





             U_1(t_1)*...*U_n(t_k)





 





But the expressions in [...] are symmetric polynomials in t_i, and as





they are polynomials with coefficients in F, the resulting expressions





are in F.  So dividing by k gives us (*) holding in F.





 





Case 2: t is logarithmic over F.  Because of logarithmic differentiation





we may assume that the u's are monic and irreducible in t and distinct.





Furthermore, we may assume v has been decomposed into partial fractions.





The fractions can only be of the form f/g^j, where deg(f)<def(g) and g





is monic irreducible.  The fact that no terms outside of F appear on the





left hand side of (*), namely just a appears, means a lot of





cancellation





must be occuring.





 





Let t'=s'/s, for some s in F.  If f(t) is monic in F[t], then f(t)' is





also





in F[t], of one less degree.  Thus f(t) does not divide f(t)'.  In





particular,





all the u'/u terms are in lowest terms already.  In the f/g^j terms in





v,





we have a g^(j+1) denominator contribution in v' of the form





-jfg'/g^(j+1).





But g doesn't divide fg', so no cancellation occurs.  But no u'/u term





can





cancel, as the u's are irreducible, and no (**)/g^(j+1) term appears in





a, because a is a member of F.  Thus no f/g^j term occurs at all in v. 





But





then none of the u's can be outside of F, since nothing can cancel them.





(Remember the u's are distinct, monic, and irreducible.)  Thus each of





the





u's is in F already, and v is a polynomial.  But v' = a - expression in





u's,





so v' is in F also.  Thus v = b t + c for some b in con(F), c in F, by





lemma





2.  Then





 





                   u_1'            u_n'     s'





          a =  c_1 --- + ... + c_n --- + b --- + c'





                   u_1             u_n      s





 





is the desired form.  So case 2 holds.





 





Case 3: t is exponential over F.  So let t'/t=s' for some s in F.  As in





case 2 above, we may assume all the u's are monic, irreducible, and





distinct





and put v in partial fraction decomposition form.  Indeed the argument





is





identical as in case 2 until we try to conclude what form v is.  Here





lemma





3 tells us that v is a finite sum of terms b*t^j where each coefficient





is





in F.  Each of the u's is also in F, with the possible exception that





one





of them may be t.  Thus every u'/u term is in F, so again we conclude v'





is in F.  By lemma 3, v is in F.  So if every u is in F, a is in the





desired





form.  Otherwise, one of the u's, say u_n, is actually t, then 





 





                        u_1'





               a =  c_1 --- + ... + (c_n s + v)'





                        u_1





 





is the desired form.  So case 3 holds.





========================================================================
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Asunto: Re: Integral S X ^ x dx , its antiderivative ?


Fecha: Mar, 9 Mar 2004 14:06:16 -0500


Para: "Ignacio Darnaude" <ummo@hispavista.com>


 





 


 





 





The integral of x^x ... [That's how to write x to the power x


when writing in ASCII]





This antiderivative is not an "elementary function", which


means it cannot be written in terms of the functions you


meet in a calculus class.





Presumably the paper of Risch will refer to the theory of


integration in finite terms due to Liouville 1835.





Classic text on the subject:


 J. F. Ritt, _Integration in Finite Terms_ (Columbia Univ Pr, 1948)





Introductory papers, aimed at undergraduates:


 A.D. Fitt & G.T.Q. Hoare, "The closed-form integration of arbitrary


  functions". Mathematical Gazette (1993) 227--236.


 E. Marchisotto & G. Zakeri, "An invitation to integration in finite


  terms". College Math. J. 25 (1994) 295--308.


  


A modern text (omitting the algebraic case)


 M. Bronstein, _Symbolic Integration I: Transcendental Functions_


  (Springer-Verlag 1997)





Here is an old newsgroup post with some explanations...





   





http://correo.hispavista.com/Redirect/mathforum.org/discuss/sci.math/m/141335/141339

















-- 


G. A. Edgar 


http://correo.hispavista.com/Redirect/www.math.ohio-state.edu/~edgar/
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[This post updates a 1995 post by Wiener also available at this site. --djr]











From: weemba@sagi.wistar.upenn.edu (Matthew P Wiener)





Subject: Re: Repost: Integral of x^x





Date: 30 Nov 1997 20:42:28 GMT





Newsgroups: sci.math





Keywords: Functions without elementary antiderivative





 





What's the antiderivative of exp(-x^2)? of sin(x)/x? of x^x?





------------------------------------------------------------------------





These, and some similar problems, can't be done.





 





More precisely, consider the notion of "elementary function".  These are





the functions that can be expressed in terms of exponentals and logarithms,





via the usual algebraic processes, including the solving (with or without





radicals) of polynomials.  Since the trigonometric functions and their





inverses can be expressed in terms of exponentials and logarithms using





the complex numbers C, these too are elementary.





 





The elementary functions are, so to speak, the "precalculus functions".





 





Then there is a theorem that says certain elementary functions do not





have an elementary antiderivative.  They still have antiderivatives,





but "they can't be done".  The more common ones get their own names.





Up to some scaling factors, "erf" is the antiderivative of exp(-x^2)





and "Si" is the antiderivative of sin(x)/x, and so on.





------------------------------------------------------------------------





For those with a little bit of undergraduate algebra, we sketch a proof





of these, and a few others, using the notion of a differential field.





These are fields (F,+,.,1,0) equipped with a derivation, that is, a





unary operator ' satisifying (a+b)'=a'+b' and (a.b)'=a.b'+a'.b.  Given





a differential field F, there is a subfield Con(F)={a:a'=0}, called the





_constants_ of F.  We let I(f) denote an antiderivative.  We ignore +cs.





 





Most examples in practice are subfields of M, the meromorphic functions





on C (or some domain).  Because of uniqueness of analytic extensions, one





rarely has to specify the precise domain.





 





Given differential fields F and G, with F a subfield of G, one calls G





an algebraic extension of F if G is a finite field extension of F.





 





One calls G a logarithmic extension of F if G=F(t) for some transcendental





t that satisfies t'=s'/s, some s in F.  We may think of t as log s, but





note that we are not actually talking about a logarithm function on F.  We





simply have a new element with the right derivative.  Other "logarithms"





would have to be adjoined as needed.





 





Similarly, one calls G an exponential extension of F if G=F(t) for some





transcendental t that satisfies t'=t.s', some s in F.  Again, we may





think of t as exp s, but there is no actual exponential function on F.





 





Finally, we call G an elementary differential extension of F if there is





a finite chain of subfields from F to G, each an algebraic, logarithmic,





or exponential extension of the next smaller field.





 





The following theorem, in the special case of M, is due to Liouville.  The





algebraic generality is due to Rosenlicht.  More powerful theorems have





been proven by Risch, Davenport, and others, and are at the heart of





symbolic integration packages.





 





A short proof, accessible to those with a solid background in undergraduate





algebra, can be found in Rosenlicht's AMM paper (see references).  It is





probably easier to master its applications first, which often use similar





techniques, and then learn the proof.





------------------------------------------------------------------------





MAIN THEOREM.  Let F,G be differential fields, let a be in F, let y be in G,





and suppose y'=a and G is an elementary differential extension field of F,





and Con(F)=Con(G).  Then there exist c_1,...,c_n in Con(F), u_1,...,u_n, v





in F such that





                           u_1'            u_n'





                 a  =  c_1 --- + ... + c_n --- + v'.





                           u_1             u_n





 





That is, the only functions that have elementary antiderivatives are the





ones that have this very specific form.  In words, elementary integrals





always consist of a function at the same algebraic "complexity" level as





the starting function (the v), along with the logarithms of functions at





the same algebraic "complexity" level (the u_i 's).





------------------------------------------------------------------------





This is a very useful theorem for proving non-integrability.  Because





this topic is of interest, but it is only written up in bits and pieces,





I give numerous examples.  (Since the original version of this FAQ from





way back when, two how-to-work-it write-ups have appeared.  See Fitt &





Hoare and Marchisotto & Zakeri in the references.)





 





In the usual case, F,G are subfields of M, so Con(F)=Con(G) always holds,





both being C.  As a side comment, we remark that this equality is necessary.





Over R(x), 1/(1+x^2) has an elementary antiderivative, but none of the above





form.





 





We first apply this theorem to the case of integrating f.exp(g), with f





and g rational functions.  If g=0, this is just f, which can be integrated





via partial fractions.  So assume g is nonzero.  Let t=exp(g), so t'=g't.





Since g is not zero, it has a pole somewhere (perhaps out at infinity),





so exp(g) has an essential singularity, and thus t is transcendental over





C(z).  Let F=C(z)(t), and let G be an elementary differential extension





containing an antiderivative for f.t.





 





Then Liouville's theorem applies, so we can write





 





                        u_1'            u_n'





             f.t =  c_1 --- + ... + c_n --- + v'





                        u_1             u_n





 





with the c_i constants and the u_i and v in F.  Each u_i is a ratio of





two C(z)[t] polynomials, U/V say.  But (U/V)'/(U/V)=U'/U-V'/V (quotient





rule), so we may rewrite the above and assume each u_i is in C(z)[t].





And if any u_i=U.V factors, then (U.V)'/(U.V)=U'/U+V'/V and so we can





further assume each u_i is irreducible over C(z).





 





What does a typical u'/u look like?  For example, consider the case of u





quadratic in t.  If A,B,C are rational functions in C(z), then A',B',C'





are also rational functions in C(z) and





 





        (A.t^2+B.t+C)'    A'.t^2 + 2At(gt) + B'.t + B.(gt) + C'





        -------------  =  -------------------------------------





         A.t^2+B.t+C               A.t^2 + B.t + C





 





                          (A'+2Ag).t^2 + (B'+Bg).t + C'





                       =  -----------------------------   .





                                 A.t^2 + B.t + C





 





(Note that contrary to the usual situation, the degree of a polynomial





in t stays the same after differentiation.  That is because we are





taking derivatives with respect to z, not t.  If we write this out





explicitly, we get (t^n)' = exp(ng)' = ng'.exp(ng) = ng'.t^n.)





 





In general, each u'/u is a ratio of polynomials of the same degree.  We





can, by doing one step of a long division, also write it as D+R/u, for





some D in C(z) and R in C(z)[t], with deg(R)<deg(u).





 





By taking partial fractions, we can write v as a sum of a C(z)[t] polynomial





and some fractions P/Q^n with deg(P)<deg(Q), Q irreducible, with each P,Q





in C(z)[t].  v' will thus be a polynomial plus partial fraction like terms.





 





Somehow, this is supposed to come out to just f.t.  By the uniqueness of





partial fraction decompositions, all terms other than multiples of t add





up to 0.  Only the polynomial part of v can contribute to f.t, and this





must be a monomial over C(z).  So f.t=(h.t)', for some rational h.  (The





temptation to assert v=h.t here is incorrect, as there could be some C(z)





term, cancelled by u'/u terms.  We only need to identify the terms in v





that contribute to f.t, so this does not matter.)





 





Summarizing, if f.exp(g) has an elementary antiderivative, with f and g





rational functions, g nonzero, then it is of the form h.exp(g), with h





rational.





 





We work out particular examples, of this and related applications.  A





bracketed function can be reduced to the specified example by a change





of variables.





 





**      exp(z^2)        [sqrt(z).exp(z),exp(z)/sqrt(z)]





 





Let h.exp(z^2) be its antiderivative.  Then h'+2zh=1.  Solving this ODE





gives h=exp(-z^2)*I(exp(z^2)), which has no pole (except perhaps at





infinity), so h, if rational, must be a polynomial.  But the derivative





of h cannot cancel the leading power of 2zh, contradiction.





 





**      exp(z)/z        [exp(exp(z)),1/log(z)]





 





Let h.exp(z) be an antiderivative.  Then h'+h=1/z.  I know of two quick





ways to prove that h is not rational.





 





One can explicitly solve the first order ODE (getting exp(-z)*I(exp(z)/z)),





and then notice that the solution has a logarithmic singularity at zero.





For example, h(z)->oo but sqrt(z)*h(z)->0 as z->0.  No rational function





does this.





 





Or one can assume h has a partial fraction decomposition.  Obviously no h'





term will give 1/z, so 1/z must be present in h already. But (1/z)'=-1/z^2,





and this is part of h'.  So there is a 1/z^2 in h to cancel this.  But





(1/z^2) is -2/z^3, and this is again part of h'.  And again, something





in h cancels this, etc etc etc.  This infinite regression is impossible.





 





**      sin(z)/z        [sin(exp(z))]





**      sin(z^2)        [sqrt(z).sin(z),sin(z)/sqrt(z)]





 





Since sin(z)=%[exp(iz)-exp(-iz)] (where %=1/2i), we merely rework the





above f.exp(g) result.  Let f be rational, let t=exp(iz) (so t'/t=i) and





let T=exp(iz^2) (so T'/T=2iz) and we want an antiderivative of either





%f.(t-1/t) or T-1/T.  For the former, the same partial fraction results





still apply in identifying %f.t=(h.t)'=(h'+ih).t, which can't happen, as





above.  In the case of sin(z^2), we want %T=(h.T)'=(h'+2izh).T, and again,





this can't happen, as above.





 





Although done, we push this analysis further in the f.sin(z)/z case, as





there are extra terms hanging around.  This time around, the conclusion





gives an additional k/t term inside v, so we have -%f/t=(k/t)'=(k'-ik)/t.





So the antiderivative of %f*(t-1/t) is h.t+k/t.





 





If f is even and real, then h and k (like t=exp(iz) and 1/t=exp(-iz)) are





parity flips of each other, so (as expected) the antiderivative is even.





Letting C=cos(z), S=sin(z), h=H+iF and k=K+iG, the real (and only) part





of the antiderivative of f is (HC-FS)+(KC+GS)=(H+K)C+(G-F)S.  So over





the reals, we find that the antiderivative of (rational even).sin(x) is





of the form (rational even).cos(x)+ (rational odd).sin(x).





 





A similar result holds for (odd).sin(x), (even).cos(x), (odd).cos(x).  And





since a rational function is the sum of its (rational) even and odd parts,





(rational).sin integrates to (rational).sin + (rational).cos, or not at all.





 





Let's backtrack, and apply this to sin(x)/x directly, using reals only.





If it has an elementary antiderivative, it must be of the form E.S+O.C.





Taking derivatives gives (E'-O).S+(E+O').C.  As with partial fractions,





we have a unique R(x)[S,C] representation here (this is a bit tricky,





as S^2=1-C^2: this step can be proven directly or via solving for t,1/t





coefficients over C).  So E'-O=1/x and E+O'=0, or O''+O=-1/x.  Expressing





O in partial fraction form, it is clear only (-1/x) in O can contribute





a -1/x.  So there is a -2/x^3 term in O'', so there is a 2/x^3 term in





O to cancel it, and so on, an infinite regress.  Hence, there is no such





rational O.





 





**      arcsin(z)/z     [z.tan(z)]





 





We consider the case where F=C(z,Z)(t) as a subfield of the meromorphic





functions on some domain, where z is the identify function, Z=sqrt(1-z^2),





and t=arcsin z.  Then Z'=-z/Z, and t'=1/Z.  We ask in the main theorem





result if this can happen with a=t/z and some field G.  t is transcendental





over C(z,Z), since it has infinite branch points.





 





So we consider the more general situation of f(z).arcsin(z) where f(z)





is rational in z and sqrt(1-z^2).  By letting z=2w/(1+w^2), note that





members of C(z,Z) are always elementarily integrable.





 





Because x^2+y^2-1 is irreducible, C[x,y]/(x^2+y^2-1) is an integral domain,





C(z,Z) is isomorphic to its field of quotients in the obvious manner, and





C(z,Z)[t] is a UFD whose field of quotients is amenable to partial fraction





analysis in the variable t.  What follows takes place at times in various





z-algebraic extensions of C(z,Z) (which may not have unique factorization),





but the terms must combine to give something in C(z,Z)(t), where partial





fraction decompositions are unique, and hence the t term will be as claimed.





 





Thus, if we can integrate f(z).arcsin(z), we have f.t = sum of (u'/u)s





and v', by the main theorem.





 





The u terms can, by logarithmic differentiation in the appropriate





algebraic extension field (recall that roots are analytic functions of





the coefficients, and t is transcendental over C(z,Z)), be assumed to





all be linear t+r, with r algebraic over z.  Then u'/u=(1/Z+r')/(t+r).





When we combine such terms back in C(z,Z), they don't form a t term





(nor any higher power of t, nor a constant).





 





Partial fraction decomposition of v gives us a polynomial in t, with





coefficients in C(z,Z), plus multiples of powers of linear t terms.





The latter don't contribute to a t term, as above.





 





If the polynomial is linear or quadratic, say v=g.t^2 + h.t + k, then





v'=g'.t^2 + (2g/Z+h').t + (h/Z+k').  Nothing can cancel the g', so g





is just a constant c.  Then 2c/Z+h'=f or I(f.t)=2c.t+I(h'.t).  The





I(h'.t) can be integrated by parts.  So the antiderivative works out





to c.(arcsin(z))^2 + h(z).arcsin(z) - I(h(z)/sqrt(1-z^2)), and as





observed above, the latter is elementary.





 





If the polynomial is cubic or higher, let v=A.t^n+B.t^(n-1)+...., then





v'=A'.t^n + (n.A/Z+B').t^(n-1) +....  A must be a constant c.  But then





nc/Z+B'=0, so B=-nct, contradicting B being in C(z,Z).





 





In particular, since 1/z + c/sqrt(1-z^2) does not have a rational in





"z and/or sqrt(1-z^2)" antiderivative, arcsin(z)/z does not have an





elementary integral.





 





**      z^z





 





In this case, let F=C(z,l)(t), the field of rational functions in z,l,t,





where l=log z and t=exp(z.l)=z^z.  Note that z,l,t are algebraically





independent.  Then t'=(l+1).t, so for a=t in the main theorem, the





partial fraction analysis shows that the only possibility is for





v=w.t+... to be the source of the t term on the left, with w in C(z,l).





 





So this means, equating t coefficients, 1=w'+(l+1)w.  This is a first





order ODE, whose solution is w=I(z^z)/z^z.  So we must prove that no





such w exists in C(z,l).  So suppose w=P/Q, with P,Q in C[z,l] and no





common factors.  Then z^z=(z^z*P/Q)'=z^z*[(1+l)PQ+P'Q-PQ']/Q^2, or





Q^2=(1+l)PQ+P'Q-PQ'.  So Q|Q', meaning Q is a constant, which we may





assume to be one.  So we have it down to P'+P+lP=1.





 





Let P=Sum[P_i l^i], with P_i, i=0...n in C[z].  But then in our equation,





there's a dangling P_n l^(n+1) term, a contradiction.





------------------------------------------------------------------------





On a slight tangent, this theorem of Liouville will not tell you that





Bessel functions are not elementary, since they are defined by second





order ODEs.  This can be proven using differential Galois theory.  A





variant of the above theorem of Liouville, with a different normal form,





does show however that J_0 cannot be integrated in terms of elementary





methods augmented with Bessel functions.





===================================================================================================











What follows is a fairly complete sketch of the proof of the Main Theorem.





First, I just state some easy (if you've had Galois Theory 101) lemmas.





Throughout the lemmas F is a differential field, and t is transcendental





over F.





 





Lemma 1: If K is an algebraic extension field of F, then there exists a





unique way to extend the derivation map from F to K so as to make K into





a differential field.





 





Lemma 2: If K=F(t) is a differential field with derivation extending F's,





and t' is in F, then for any polynomial f(t) in F[t], f(t)' is a polynomial





in F[t] of the same degree (if the leading coefficient is not in Con(F))





or of degree one less (if the leading coefficient is in Con(F)).





 





Lemma 3: If K=F(t) is a differential field with derivation extending F's,





and t'/t is in F, then for any a in F, n a positive integer, there exists





h in F such that (a*t^n)'=h*t^n.  More generally, if f(t) is any polynomial





in F[t], then f(t)' is of the same degree as f(t), and is a multiple of





f(t) iff f(t) is a monomial.





 





These are all fairly elementary.  For example, (a*t^n)'=(a'+at'/t)*t^n





in lemma 3.  The final 'iff' in lemma 3 is where transcendence of t comes





in.  Lemma 1 in the usual case of subfields of M is an easy consequence





of the implicit function theorem.





--------------------------------------------------------------------------





MAIN THEOREM.  Let F,G be differential fields, let a be in F, let y be in G,





and suppose y'=a and G is an elementary differential extension field of F,





and Con(F)=Con(G).  Then there exist c_1,...,c_n in Con(F), u_1,...,u_n, v





in F such that





                        u_1'            u_n'





               a =  c_1 --- + ... + c_n --- + v'.





                        u_1             u_n





 





In other words, the only functions that have elementary antiderivatives





are the ones that have this very specific form.





------------------------------------------------------------------------





Proof:





 





By assumption there exists a finite chain of fields connecting F to G





such that the extension from one field to the next is given by performing





an algebraic, logarithmic, or exponential extension.  We show that if the





form (*) can be satisfied with values in F2, and F2 is one of the three





kinds of allowable extensions of F1, then the form (*) can be satisfied





in F1.  The form (*) is obviously satisfied in G: let all the c's be 0, the





u's be 1, and let v be the original y for which y'=a.  Thus, if the form





(*) can be pulled down one field, we will be able to pull it down to F,





and the theorem holds.





 





So we may assume without loss of generality that G=F(t).





 





Case 1: t is algebraic over F.  Say t is of degree k.  Then there are





polynomials U_i and V such that U_i(t)=u_i and V(t)=v.  So we have





 





                        U_1(t)'            U_n(t)'





               a =  c_1 ------ + ... + c_n ------ + V(t)'.





                        U_1(t)             U_n(t)





 





Now, by the uniqueness of extensions of derivatives in the algebraic case,





we may replace t by any of its conjugates t_1,..., t_k, and the same equation





holds.  In other words, because a is in F, it is fixed under the Galois





automorphisms.  Summing up over the conjugates, and converting the U'/U





terms into products using logarithmic differentiation, we have





 





            [U_1(t_1)*...*U_1(t_k)]'





 k a =  c_1 ----------------------- + ...  + [V(t_1)+...+V(t_k)]'.





             U_1(t_1)*...*U_n(t_k)





 





But the expressions in [...] are symmetric polynomials in t_i, and as





they are polynomials with coefficients in F, the resulting expressions





are in F.  So dividing by k gives us (*) holding in F.





 





Case 2: t is logarithmic over F.  Because of logarithmic differentiation





we may assume that the u's are monic and irreducible in t and distinct.





Furthermore, we may assume v has been decomposed into partial fractions.





The fractions can only be of the form f/g^j, where deg(f)<def(g) and g





is monic irreducible.  The fact that no terms outside of F appear on the





left hand side of (*), namely just a appears, means a lot of cancellation





must be occuring.





 





Let t'=s'/s, for some s in F.  If f(t) is monic in F[t], then f(t)' is also





in F[t], of one less degree.  Thus f(t) does not divide f(t)'.  In particular,





all the u'/u terms are in lowest terms already.  In the f/g^j terms in v,





we have a g^(j+1) denominator contribution in v' of the form -jfg'/g^(j+1).





But g doesn't divide fg', so no cancellation occurs.  But no u'/u term can





cancel, as the u's are irreducible, and no (**)/g^(j+1) term appears in





a, because a is a member of F.  Thus no f/g^j term occurs at all in v.  But





then none of the u's can be outside of F, since nothing can cancel them.





(Remember the u's are distinct, monic, and irreducible.)  Thus each of the





u's is in F already, and v is a polynomial.  But v' = a - expression in u's,





so v' is in F also.  Thus v = b t + c for some b in con(F), c in F, by lemma





2.  Then





 





                   u_1'            u_n'     s'





          a =  c_1 --- + ... + c_n --- + b --- + c'





                   u_1             u_n      s





 





is the desired form.  So case 2 holds.





 





Case 3: t is exponential over F.  So let t'/t=s' for some s in F.  As in





case 2 above, we may assume all the u's are monic, irreducible, and distinct





and put v in partial fraction decomposition form.  Indeed the argument is





identical as in case 2 until we try to conclude what form v is.  Here lemma





3 tells us that v is a finite sum of terms b*t^j where each coefficient is





in F.  Each of the u's is also in F, with the possible exception that one





of them may be t.  Thus every u'/u term is in F, so again we conclude v'





is in F.  By lemma 3, v is in F.  So if every u is in F, a is in the desired





form.  Otherwise, one of the u's, say u_n, is actually t, then 





 





                        u_1'





               a =  c_1 --- + ... + (c_n s + v)'





                        u_1





 





is the desired form.  So case 3 holds.
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http://www.galeon.com/darnaude




















                Dear Sirs ,














                Please first realize this unexpectod request is not a routine petition at all , but an old unresolved soul?problem to the writer , a graduated in Economics and by the way enamoured of Mathematics , his second lifelong love affair.    ( He is , too , fallen in love with some imaginable  sort of solution to the handsome exponential equation             "A   elevated to   x   +    B   elevated to    x      =      C "  ).                                            ( A ^x  +  B ^x = C ).














                I am	extremely interested 	in finding finally, after many years of fruitless search , the rather arcane answer to my personal   "Fermat  Last  Theorem"  ,  I 	think an easy task for  Euler   or   Galois    :     the mysterious integral 


which reads as follows    :                                  





                                                     


"Indefinite  integral  of      X     elevated  to    x     by  differential     x"           [ Integral X power x dx ][Integral  X  to the power  x  dx  ]:                     











S  X ^ x  dx














               In other words I am looking for some elusive antiderivative algebraical function that , derived , result into a beautifully complex and elegant  potential?exponential  expression   :    X   elevated to   x.  [ X ^ x  ].














              Be sure this remote friend Ignacio would be delighted if you wisely make the  Sevillian  happy by means of forwarding him his keenly wanted explanation of this	damned integral , send him the address of possible academic sources of information  ( the most prestigious worldwide university departments especialized in  Math )	, or specific bibliography dealing with the above mentioned          "Integral of    X    elevetad to    x     differential    x"     :      S  X ^ x  dx .














[ In respect to the above mentioned integral  S X^x dx  ,      I refer to the paper by  Robert H.Risch    The problem of integration in finite terms   ( Transactions of the  American Mathematical Society  ,  Vol. 139  ,  ( 1969 )  ,          pages  167-189  )  ]. 








               





         I remain mathematically and of course humanly grateful to you for such an integral informative favour.














         With my warmest regards
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